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LETTER TO THE EDITOR 

Some solutions of the Zamolodchikov tetrahedron equation 

A Liguorit and M Mintchevt# 
tDipartimento di Fisica dell'Universit2 di Pisa, Pisa, Italy 
t: Istituto Nazionale di Fisica Nucleate, Sezione di Pisa, Pisa, Italy 

Received 8 March 1993 

Abstract. By introducing a natural spectral parameter in the quantum Yang-Bxter 
equation, we construct a family of solutions of Zamolodchikov's tetrahedron equation. 
The general procedure is applied to the universal quantum group R-matrix. 

Recently Carter and Saito [l] discovered a simple but quite remarkable relationship 
between the quantum Yang-Baxter (YB) [2] and the Zamolodchikov tetrahedron (ZT) 
[3] equations. In particular, this relationship allows one to construct solutions of the 
ZT equation from solutions of the YB equation. The procedure can be formulated in 
abstract algebraic terms as follows. Lets& be an associative algebra (over C) with unity 
1. Consider any three elements {A, M ,  B} of s&@s&, satisfying the YB 

AnAi3Az = A d  ~3A1z (1) 
BIZBIG%= B z B i A  (2) 

M i z M i 4 z  = A n M n M n  (3) 
Bidfi3Mz = M73M13B1~. (4) 

and the mixed equations 

Equations (1)-(4) represent in the standard notation equalities in dm3. In the 
following we call {A, M ,  B}  a Carter-Saito (a) triplet. It is not difficult to show that 
any cs triplet gives rise to a solution of the ZT equation. One can proceed for instance 
by observing that A, M and B belong to d@s& and therefore can be written in the 
form 

A - E  a,@a: B = c  b,@b; M = x  m k @ m ;  (5) 
le1 1"J XEK 

where for simplicity we assume that the index sets I, J and K are finite. More general 
index sets can be treated along the same lines by requiring s& to be a topological 
algebra. Now, taking into account the conditions (1-4), one can verify by purely 
algebraic manipulations that 

satisfies the ZT equation 

zl23zl45z246z356= z356z2A6z14Sz123 (7) 
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on [Se@~l]@~. Clearly, in order to implement effectively the above method for 
deriving solutions of the ZT equation, one should solve the preliminary problem of 
constructing cs triplets. This is precisely the problem we address in the present note. 

In what follows the YB equation with spectral paramete? plays a fundamental role. 
For this reason we start by briefly recalling the approach to the spectral YB equation 
developed in [4]. Given a solution 

of the YB equation, we have shown in [4] how to reconstruct a relative semigroup of 
spectral parameters Y(R) belonging to End(Se). More precisely, denoting by Se, and 
Se, the suhalgebras of SP generated by the elements { l , c i : i e O  and { l , c : i ~ f i ,  
respectively, one has that R edf@Se, Now we define the subset 9@) cEnd(&[) as 
follows: a E 5’@) if and only if there exists Be End(&,) such that 

[a @ id] (R) = [idBB] (R) . (9) 
It is easily seen that Yf(R) is actually a semigroup with respect to the composition of 
endomorphisms. Let us introduce the mapping 

R: Yl(R)-+&@‘5& 
defined by 

R(a) = [a@id] (R). 
Using the property (9), one can easily show that R(a) satisfies the spectral YB equation 

Rlz(al)R,3(ala~)R,(a,) =R,(az)Rl3(a,a,)R,,(a1). (11) 
The argument of the second factor of both sides of (11) is the composition alaz of the 
endomorphisms a1 and aZ. The order is essential since in general Y,(R) is non- 
commutative. We have argued in [4] that 5’@) represents a set of generalized spectral 
parameters and that the above algebraic procedure can be considered as a sort of 
‘Baxterization’ [5]. 

The right counterpart Y,(R) of the semigroup Yf(R)  is introduced analogously and 
one can verify that 

R(B) = [id@B1 (R) B E  9 m  (12) 
satisfies (11) as well. In general one has Yf(R)#9,(R), which gives rise to a sort of 
asymmetry. Notice however that if R satisfies the YB equation, so does a@), where a 
is the exchange operator 

a : a @ b ~ b @ a .  

Moreover, one easily verifies that Yf(a(R)) =Yp,(R) and Y,(O(R)) = YP,(R). Without 
loss of generality, one can concentrate therefore on Yf(R). 

The idempotent elements of YAR) 

$,(R)={&EY[(R): &Z=&} (13) 
play a distinguished role in the above scheme. In fact, from (11) it follows that the 
mapping (10) satisfies the YB equation in any idempotent point of 9,(R). Furthermore, 
it is an immediate consequence of (11) that 

I R ( 4 ,  R(w-4, R(Ez)} (14) 
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is a sc triplet for any a 6Yi(R) and c1, c2 E 9@). In this way one obtains a whole family 
of cs triplets, naturally generated by a solution of the quantum YB equation. 

In the rest of the present note we illustrate the above procedure for constructing cs 
triplets, using as a starting point the universal R-matrix associated with a quantum 
group. Denote by {ai: i = l ,  . . . , r} a basis of simple roots of a complex simple Lie 
algebra % of rank r. Let (. , .) be the invariant inner product on the root space and let 
a, be the associated Cartan matrix. The quantum group Q,(%) is the associative 
algebra generated by { l ,XF,Hi } ,  which satisfy the following commutation and 
generaiied Serre relations 

[Hi, Hi] = 0 
[Xi+,X;']=Gij[Hi], 

[Hi, X,? ] = f aqX: 

Here q is a complex parameter, qi=q'"~*"c' and 

It is known [6] that Qq(%) has actually the structure of a quasi-triangular Hopf 
algebra; the corresponding universal R-matrix? R E  Qq(%)@Qq(%) satisfies the YB 
equation and has the form 

where toe %@.%e corresponds to the canonical scalar product in the Cartan subalgebra 
and 

H y = 2  Y = ( Y I , .  . . ,Y,)EZ 
i= 1 

with 2, = {n E 2 n 0). Finally, {PJ are homogeneous polynomials (with q- 
dependent coefficients) in the variables ui=X,? @l and ui= l @ X ;  satisfying 

It follows from the general form of Py that R E %,b+ @Qqb-, where Qqb+ and Qq&- are 
the subalgebras generated by [ l ,  Hi, X : }  and ( 1 ,  Hi, X ; }  respectively. The right-hand 
side of (18) can be written more explicitly [7], but we do not enter into details here 
because what we need below is only the property (19). 

% deg,P, = deg,P,= yi.  (19) 

Let us consider now the space C' and let us define the composition 

,+=(AlPl,. . . >A,P,.). (20) 

t To be more precise, one should use at this point a completion of %@) with respect to a suitable topology 
and 8 should be understood in the topological sense. 
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Equipped with this operation, C' becomes an abelian semigroup with 2r idempotent 
elements forming the set 9. Any ~ € 9  is a vector in C' whose coordinates take the 
values 1 or 0. 

Our next step is to observe that for any A E C' the mapping 

ai(Hi) = Hi al(Xi+) =&xT (21) 
defines an endomorphism on @U$+. It is obvious from the homogeneity property (19) 
that 

[aA@id] (R) = [id@PA] (R)  (22) 

PdHi)  = Hi P1(x;)=nx. (23) 

where PA is the following endomorphism on Q4b-: 

Notice that both a, and 
it follows also that 

are well-defined for any & E  9. From our general discussion 

satisfies (11) with spectral parameter in the semigroup C'. From (24) one gets for the 
elements of the cs triplet (14) the expressions 

where Z+(E) -{y E Z+: &y= y}. In any irreducible representation of @Uq(%), the series 
in the right-hand side of equations (24)-(27) are actually finite sums. The resulting 
matrices can be given the form (5) and by means of (6) one derives a family of matrix 
solutions of the ZT equation. 

In order to become more familiar with the general expressions (24)-(27), it is 
instmctive to work out a concrete example. Let % be the Lie algebra A, and let us 
consider the fundamental representation of @U4(Ar). Then (24) gives the (r+ 1) x 
(r+ 1)-matrix 

,+I ,+I r+ 1 

R ( 4 = q z  E,@&+ 2 & @ E b b + ( q - q - ' )  c %b(a)&b'8Ebo (28) 
<=I  o.b=l a.b=l 

a f b  

where 

Observe that the matrix (28) has an inverse for any ,X E C'. Substituting for 1 in (29) 
two arbitrary elements c1, Q E ~  and E&, e Cr, one derives from (28) three (invertible) 
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matrices which represent a cs triplet. Varying A E C '  and E,, E ~ E Q  one generates 
actually a whole family of matrix cs triplets. 

In conclusion, we would like to emphasize that the construction of cs triplets 
described above works on general algebraic level; the basic objects are an associative 
algebra Se and a solution R E  SS@d of the quantum YB equation. This fact allows one 
to derive universal (representation independent) cs triplets, which take matrix form 
after fixing a representation of Se. We believe that further investigations in this 
framework will shed new light on the relationship between the YB and zr equations. 

References 

111 Carter I S and Saito M 1992 On formulations and solutions of simulex equations Prewinint 
i2j Yang C N 1967 Phys. Reo. Leu. 19 1312 

Baxter R J 1982 Exmdv SoIaed ModeLs in Slatistical Mechanics (New York Academic) 
[3] Zamolodchikov A B 1981 Commun. Math. Phys. 79 489 
[4] Liguori A and Mintchev M 1992 Phys. Leff. B275 371 
[5] Jones V F R 1991 Int 1. Mod. Phys. 6 2035 
[6] Drinfeld V G 1987 Quantum Groups Proceedings of the Inremahnnl Congrem of Mihematicians, 

[7] ROSO M 19g9 C o m u n .  Mmh. Phys. 124 307 
Berkeley 1986 ed A M Gleason (Providence: AMs) pp798-820 

Levendonkii S Z and Soibelman Y B 1990 3. Geom. Phys. 7 241 
Kirillov A N and Resheahin N 1990 Commnn. Malh. Phys. 134 421 


